
 

  

1. INTRODUCTION 

The dynamics of a rock mass are related to the occurrence 

of natural discontinuities which occur on different scales, 

with variable intensities, shapes, and distributions through 

space (Lei et al., 2017).  Fracture truncation, branching, 

clustering and spacing, among other measurable 

attributes, define the geometry of a fracture network. 

Computational models that represent the geometry of 

fracture networks contribute to the understanding of the 

strength and deformation behavior of rock masses, rock 

fragmentation, slope stability, groundwater flow, and 

mass transport. A discrete fracture network (DFN) model 

represents the geometric arrangement and characteristics 

of fractures within a volume of rock. 

Several means of fracture network generation are 

described in the literature. Placement methods are 

computationally efficient because fractures are modeled 

as simple planar shapes arranged within a domain (Long 

et al., 1985), but the realism and accuracy of resulting 

DFN models are often limited. Mechanical propagation 

methods can produce realistic DFNs by simulating the 

creation of fractures driven by complex geomechanical 

conditions. These models are generally limited to fracture 

propagation in two dimensions and are computationally 

intensive (Lei et al., 2014). Geometrical propagation 

methods (Srivastava, 2002) are employed by MoFrac and 

provide much of the realism of mechanical propagation 

methods, while remaining computationally efficient. 

MoFrac DFN models are composed of both stochastic and 

deterministic fractures. Attributes that reflect properties 

of fracture groups are used to generate stochastic fractures 

at locations within a rock volume where no fracture data 

have been recorded. These statistical fracture group 

attributes are derived from available data such as 

orientation, size, and geological hierarchy, all of which 

are generally interpreted from mapped field data. 

Deterministic fractures are propagated from mapped 

fracture traces on ground surface or tunnel walls, guided 

by the actual trace and the applicable fracture group 

attributes, such as orientation and shape. This 

methodology, combining both types of fractures, supports 

DFN modeling of a rock mass with varying degrees of 

available data regarding the volume of interest.  The 

accuracy, certainty, and realism of a DFN will be 

proportional to the quality and totality of the input data. 
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ABSTRACT: This paper presents a validation study for a new software tool, MoFrac, which generates realistic discrete fracture 

network (DFN) models. MoFrac implements aspects of a unique geostatistical and rules-based methodology for DFN generation. 

Non-planar fractures are generated through a conditional simulation process that propagates deterministic fracture traces in three 

dimensions. Stochastic fractures are generated based on conditioning to statistics derived from field-mapped fracture traces and 

orientation parameters. Data mapped from the Äspö TAS08 tunnel close to Oskarshamn, Sweden were used for this validation study. 

The generated DFN model was analyzed for fracture orientation, size, intensity, and location. The modeling results demonstrate that 

MoFrac generates representative DFNs with a realistic appearance that conform to mapped fracture traces and statistics derived from 

the input data. MoFrac DFNs are suitable for integration into a variety of numerical models.  

 

 



 

  

The MoFrac DFN software is developed by MIRARCO, 

based on the methodologies first implemented in 

FXSIM3D (Srivastava, 2002) for the generation of three-

dimensional DFN models conditioned to the statistical 

attributes of any available mapped fracture data 

(Srivastava et al. 2004). MoFrac generates realistic 

fracture networks consisting of non-planar, undulated 

stochastic and deterministic fractures conditioned to both 

individual and group attributes. Successful DFN 

modeling has been accomplished using pre-beta versions 

of MoFrac (Vazaios et al., 2014, 2015; Farahmand et al., 

2015; Macciotta & Martin, 2015). 

This validation study assesses the capability of MoFrac to 

generate DFN models that honor mapped fracture data 

and fracture group attributes in underground excavations. 

Specifically, fracture orientation, intensity, size, and 

spatial location are quantitatively assessed. 

2. DFN GENERATION METHODOLOGY IN 

MOFRAC 

A fracture surface generated by MoFrac is represented as 

a mesh of approximately equilateral triangles. A fracture 

propagates from a mapped trace through tessellation of 

this mesh, guided by an orientation plane that is 

probabilistically derived and constrained by known data. 

During this process the fracture surface is undulated, 

controlled by input parameters. Deterministic fractures 

propagate from known fracture traces, whereas stochastic 

fractures propagate from probabilistically generated 

traces that conform to the statistical distribution and 

characteristics of the anticipated DFN. 

Fractures are generated sequentially, from largest to 

smallest. Regions can be defined and deterministic 

fractures are modeled before stochastic fractures in each 

discrete region. This approach allows for stochastic 

infilling, when needed, in order to achieve a desired 

fracture intensity. Stochastic fractures can be prevented 

from intersecting defined surfaces or volumes, and can be 

prevented from crossing regional boundaries. Fracture 

groups are assigned truncation probabilities, geometric 

and spatial properties, and are sequenced based on user-

defined rules. Scaling can be used to adjust the triangle 

size of a surface mesh according to fracture size. 

Alternatively, all fractures can be generated with the same 

resolution. 

3. DFN PARAMETERS IN MOFRAC 

MoFrac has a number of required parameters, such as 

fracture orientation, intensity, size, and undulation for 

DFN modeling. Input datasets may include fracture 

traces, lineaments, and surface meshes. 

 

3.1. Fracture intensity and size distributions 
Cumulative length distributions (CLD) and cumulative 

area distributions (CAD) can be used by MoFrac to 

characterize the number and size of fractures in defined 

fracture groups. 

Fracture intensity attribute values can be two-dimensional 

(P21, CLD) or three dimensional (P32, CAD). These values 

are scale independent; however, P21 values are dependent 

on the orientation of fractures relative to the observation 

plane (Dershowitz & Herda, 1992). A cumulative length 

or area distribution can be interpreted on a log-log plot 

showing the number of fractures greater than a size 

threshold per domain (area or volume). 

The number of stochastically generated fractures for a 

group in a defined region (Ns) is determined using the 

slope of the distribution on a log-log plot that shows the 

change in fracture intensity as a function of size, along 

with limiting minimum and maximum values. MoFrac 

generates fractures uniformly across a defined 

distribution, representing fracture size and intensity. The 

total number of stochastic fractures generated is the 

difference between the minimum and maximum size 

thresholds. 

3.2. Fracture orientation 
Fracture orientation is the attribute commonly used to 

define fracture groups. By viewing fracture orientation 

data on a stereonet, fracture groups can be identified. 

Orientations can be expressed using common 

nomenclature, (dip, dip direction, k), (strike, dip), or 

(trend, plunge), where k is Fisher’s dispersion factor. 

Where a dispersion factor is not used, a standard deviation 

is assigned to each input fracture orientation individually. 

 

3.3. Fracture undulation 
Fractures are non-planar in situ. MoFrac provides an 

undulation feature intended to mimic the geometry of 

natural fracture surfaces. An undulated surface is created 

by assigning height values from a mean orientation plane, 

across the fracture surface. Deterministic fractures are 

forced to honor their natural undulation as sampled at the 

location of the trace. Stochastic fractures are seeded from 

an initial trace, randomly located, that has shape assigned 

through two parameters: fractal dimension, and the 

number of iterations. 

The process of generating an undulating trace begins with 

a line segment which is fractalized using a technique 

derived from the h-L method (Li & Huang, 2015). Let D 

be the fractal dimension of the line and for every iteration 

of the fractalization, the length of the line increases to: 

𝐿′ = 𝐿 ∙ (
2𝐷

2
)   (1) 

A line is inflected as many times as required to achieve 

the sinuosity satisfying the fractal dimension assigned. 

This creates a randomized wiggly line that can be 



 

  

generated based on characteristics of mapped fracture 

traces. 

The number of iterations is the second input parameter to 

create a stochastic trace. Every iteration uses line 

segments one half the length of the previous iteration. 

These simulated fracture traces are generated at 

randomized locations in the defined region, and then are 

propagated to form fracture surfaces using the same 

processes as deterministic fracture propagation. 

The surface of the fracture is also undulated using the 

same process with a second fractal dimension input. This 

undulation occurs perpendicular to the trace and the 

number of iterations is determined by the fracture's dip 

length. 

3.4. Additional DFN parameters 
The actual shape and size of fractures in situ are unknown 

in three dimensional space (Jing & Stephansson, 2007). 

These attributes are characterized through three 

parameters: strike to dip ratio, shape, and a terminal area 

constraint (TAC) factor.  The TAC factor specifies a 

range across the fracture surface where the associated 

trace could be situated. This process uses the ratio of 

fracture surface area on either side of a trace. A TAC 

factor of 1 means that traces always bisects the fracture 

shape. When a TAC factor greater than 1 is applied, a 

randomized value between 1 and the TAC factor is used, 

on a fracture-by-fracture basis. The strike to dip ratio and 

the TAC factor determine the size of a fracture based on 

the trace, and contribute to the resulting shape. The basic 

shape of a modeled fracture is elliptical or rectangular, as 

specified for the fracture group. Both shapes were 

considered for validation and the final DFN model 

presented is a randomized mix between the two fracture 

shapes. 

Deterministic fractures have both individual and group 

orientations; in case these orientations conflict, the 

orientation honored is specified by an input parameter. 

4. ÄSPÖ CASE STUDY 

This case study was undertaken as a validation of the 

capability of MoFrac to generate realistic and 

geologically plausible DFN models. Modeling was 

completed using MoFrac Beta, build number 4570. Äspö 

Tunnel TAS08 is part of the SKB’s HRL located 400 m 

below surface, oriented Northwest, with an approximate 

azimuth of 322°. The tunnel is about 7 m in height and is 

shown in plan view in Figure 1. The data for this modeling 

were collected by the Swedish Nuclear Fuel and Waste 

Management Company (SKB) at the Äspö Hard Rock 

Laboratory (HRL) near Oskarshamn, Sweden (SKB, 

2016). Fracture traces were mapped on the Äspö TAS08 

tunnel walls and are shown in Figure 2. A second face was 

mapped during the development of the tunnel, orientated 

laterally at the midpoint. Data from this face was used for 

the calculation of initial CLD values, but not for the actual 

modeling, allowing it to be used for comparison to 

stochastic fractures through the same plane. 

 

The surface area of the tunnel is calculated as the sum of 

the products of measured wall and face.  A surface area of 

950 m2 is calculated from the tunnel face, back, and two 

walls. 

4.1. Fracture orientation 

Fractures mapped from the Äspö TAS08 tunnel walls are 

non-planar. Fracture traces, including those from the 

intermediate round tunnel face, were assigned strike and 

dip values during mapping and were analyzed for 

grouping using DIPS (Rocscience, 2015). Interpretation 

of the resultant stereonet yielded four major fracture 

groups; a fifth ‘random’ group was included to allow for 

representation of all fractures during modeling. The poles 

of the input traces and defined fracture groups are shown 

in Figure 3, as plotted on a stereonet. 

Fig. 2. Fracture traces mapped on the Äspö TAS08 tunnel walls. 

23.96 m 
15.74 m 

11.39 m 

Fig. 1. Plan view of the Äspö TAS08 tunnel at the SKB Hard 

Rock Laboratory (courtesy SKB). 

 



 

  

 
Fig. 3. Wulff stereonets of fracture traces in Äspö TAS08 tunnel 

showing (a) the poles of all mapped traces used for conditioning 

stochastic fractures and (b) the location of defined fracture 

groups. 

DFN input parameters for orientation and fracture 

intensity are shown in Table 1. Fracture groups were 

divided into two subgroups based on size: up to 2 m, and 

larger than 2 m. CLD values were interpreted from the 

distribution of mapped traces. A CLD dimension factor 

was assigned independently for each subgroup. This 

allows for a reduced intensity in the small fractures as 

compared with the large fractures to account for bias 

associated with field mapped data that underestimates the 

true length of fractures traces. 

4.2. Fracture intensity 
When using CLD values to control fracture intensities in 

three dimensions, fractures can be seeded on a range of 

planes; these planes can be either predefined or 

randomized. For this study, CLD values were used to 

control the generation of stochastic fractures, as it allows 

for non-linear, probabilistically generated traces to guide 

the propagation of stochastic fractures. The strike to dip 

ratio of both deterministic and stochastic fractures was 

randomized from 0.25 to 4.0, with a mean of 1.0 (𝑚̅sd). 

For each fracture group, using the height (z) of the domain 

and the mean trace length (𝑚̅tl), the dimension factor (M) 

for the CLD values was calculated as: 

𝑀 = 𝑧 ÷ (
𝑚̅𝑡𝑙

𝑚̅𝑠𝑑
)                          (2) 

For fractures having a trace length of less than 2 m, the 

factor was divided by 4, and length thresholds were 

assigned. This compensated for the bias associated with 

data from mapped tunnel walls (Srivastava, 2006). Large 

fractures in a rock mass can be under-represented when 

mapped as traces that may not be completely exposed.  

Small traces on walls could arise from either small or 

large fractures; they can also come from fractures induced 

through the excavation process, which are not intended to 

be modeled. 

The CLD values used to define fracture intensities 

represent the slope of the curve on a log-log plot showing 

fracture intensity as a function of length. These values, 

calculated from the known traces, are shown in Figure 4. 

CLD values were assigned to each subgroup based on 

measured data and then adjusted using the given 

dimension factor to allow for the CLD to represent 

fracture intensity throughout the experimental volume. 

Input intensity parameters were initially verified by 

comparing the P32 values for a representative equivalent 

volume (REV) and for the total experimental volume. The 

REV is determined as the product of the mapped surface 

area and mean length of fracture traces over that area. The 

mean length of fracture trace is 2.17 m. The REV is 2062 

m3 and the experimental volume is 48,000 m3. The total 

surface area of all modeled deterministic fractures is used 

to compute P32 for the REV. Similarly, the total surface 

area of all fractures is used to compute P32 for the 

experimental volume. As the experimental volume is 

about 24 times the REV, the cumulative fracture surface 

area for these volumes is expected to exhibit the same 

ratio. 

Table 1. Group orientation and intensity parameters used in 

DFN modeling of the Äspö TAS08 tunnel. Notation for size 

range is small (S), and large (L). 
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A S 72 20 10 0.6 0.300 2 0.100 11.02 

A L 72 20 10 2.0 0.100 40 0.001 11.86 

B1 S 89 121 38 0.5 0.070 2 0.020 9.86 

B1 L 89 121 38 2.0 0.035 30 0.001 14.22 

B2 S 78 86 90 0.5 0.070 2 0.020 9.50 

B2 L 78 86 90 2.0 0.035 30 0.001 10.79 

H S 21 267 26 0.5 0.070 2 0.020 10.56 

H L 21 267 26 2.0 0.035 30 0.001 11.86 

R S 17 190 3 0.5 0.070 2 0.035 9.61 

R L 17 190 3 2.0 0.035 30 0.001 9.26 
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4.3    Fracture size 
The mean fracture trace length of the dataset was 2.17 m, 

with a range from 0.228 to 15.3 m. The mean was the 

determining factor in the size-based classification of 

fractures. The determination of the minimum and the 

maximum lengths for each group was based on the 

original CLD representing mapped data. The minimum 

length for the small subgroups was set to 1.5 m, except 

for fracture group A, which had a minimum trace length 

for stochastic fractures of 1 m. The rationale for this was 

based on the distribution of traces, while considering the 

bias of over-representation of small traces, as group A 

showed a higher frequency of small traces and a lower 

minimum length compared with the other groups. The 

maximum trace length that limits the size of stochastic 

fractures was 25 m. This is 67% longer than the length of 

the largest trace in the dataset and reflects the TAC factor 

of 3 that was used for modeling. The CLD values used as 

input for DFN modeling for each subgroup are shown in 

Figure 5, before being adjusted by the calculated 

dimension factor. The minimum and maximum trace 

length settings are superimposed on this figure to 

demonstrate the range from which stochastic fractures are 

sampled. 

 

Fig. 4. Cumulative length distribution (CLD) for Äspö TAS08 

tunnel dataset. 

4.3. Fracture undulation 
Fractures are undulated by honoring the mapped traces or 

stochastic traces that are generated by MoFrac. The 

settings for undulation defined increasing surface 

roughness for the five fracture groups. The fractal 

dimension ranged from 1.002 to 1.01. Fracture group A 

had the least roughness will fracture group R had the 

most. The second undulation parameter was set to the 

same scale, increasing with each fracture group. For the 

generation of stochastic traces, five iterations were used 

for each group. 

4.4. Other DFN input parameters 
Additional fracture attributes including strike to dip ratio, 

TAC factor, shape, joining and truncation probabilities 

can be provided as input. The probability of truncation 

was set to 1 between all fracture groups and the 

probability of joining traces was set to 0 for this case 

study. Stochastic fractures were prevented from 

intersecting the tunnel wall mesh through a nudging 

procedure that shifts a stochastic trace down strike a 

distance of 5% of the trace length; this process continues 

until a stochastic trace does not intersect the tunnel wall. 

Fig. 5. CLD input used for generating DFN models of the Äspö 

TAS08 tunnel (before adjustment), with minimum and 

maximum length thresholds shown. 

The strike to dip ratio, TAC factor, and shape of modeled 

fractures are group attributes, which are the same for each 

fracture subgroup and for both the deterministic and the 

stochastic fractures. The strike to dip ratio was set to a 

range of 0.25 to 4. This ratio considers the entire shape of 

the fracture and will not necessarily be reflected in a 

fracture that truncates. The TAC factor was set to a range 

of 1 to 3. DFN models were generated with rectangular 

and elliptical shapes separately for validation. 

4.5. Model domain 
An experimental volume of 40 × 40 × 30 m3 (l × w × h) 

was defined to enclose the TAS08 tunnel. The tunnel wall 

mesh and the mapped lineaments were not rotated to 

match the X and Y axes. The volume extends from 410 to 

380 m of depth and allows for about 10 m of unmapped 

space laterally from each side of the tunnel. 

5. RESULTS  

Three separate MoFrac generated DFN models 

representing the rock mass surrounding the Äspö TAS08 

tunnel are shown in Figure 6. The models show three 

combinations of fracture shapes, rectangular, elliptical 

and randomly mixed. The DFN input parameters are used 

for comparison to, and validation of, the generated 

models. The orientation and location of individual 

deterministic fractures as well as overall group 

orientations, intensities and size distributions were 

analyzed quantitatively and compared to input values. 

The undulation parameters and geometric attributes were 

analyzed qualitatively by visual comparisons between 

both types of fractures and their traces along defined 

planes. 
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MoFrac can generate metrics that allow for quantitative 

assessment of the orientation, location, and size of all 

fractures generated. The metrics directly compare 

modeled deterministic fractures to the input dataset, and a 

VTK (Kitware, 2017) file is generated that shows all 

fracture intersections with a defined mesh. This mesh can 

be imported as an object or defined manually for 

modeling. For the analysis of the DFNs generated in this 

study, the TAS08 tunnel wall mesh was used. This 

facilitates a comparison ensuring that deterministic traces 

are being honored and there are no stochastic fractures 

that intersect surfaces where mapping has occurred. The 

intersections of modeled fractures with the surface of the 

tunnel walls are shown in comparison to the mapped 

traces on the same surface in Figure 7. 

5.1. Fracture orientation results 
The orientations of modeled fractures were first inspected 

on a stereonet. Figure 8 compares the stereonets from 

deterministic fractures modeled using both shapes with 

the stereonet showing all 5873 stochastic fractures from 

the final DFN model. A cursory visual inspection 

demonstrates the similarities in orientation compared with 

group orientations of the mapped fractures (Figure 3). The 

orientations are also reported in Table 2 based on analysis 

through visualization of orientations on a stereonet and by 

using the reported dips and dip directions from MoFrac. 

5.2. Fracture intensity results 
Fracture intensity validation was performed in two stages, 

first by comparison of the overall P32 value for 

deterministic fractures, based on the REV, to the P32 value 

for the entire set of generated fractures based on the 

experimental volume. The experimental volume is 24 

times larger than the REV and thus the ratio between the 

cumulative fracture surface areas of both volumes is 

expected to also be 24:1. The P32 values for the 

deterministic fractures were calculated for each size 

grouping as follows; rectangular and elliptical fractures 

had P32 values of 0.69 m-1 and 1.21 m-1 respectively and 

1.02 m-1 for the mixed fractures. For the full DFN 

including stochastic fractures, a P32 of 1.08 m-1 was 

realized. Due to differences in truncation between shapes, 

the rectangular fractures had a higher degree of truncation 

which results in a lower P32 value. 

The CLD values needed for stochastic fracture generation 

were derived from the mapped fracture length 

distribution. The output of the DFN model is measured in 

terms of fracture surface area. As CAD output values 

reflect the dimension factor used, the size distribution of 

modeled fractures must be modified for comparison to the 

CLD values. The surface areas must first be resolved to 

fracture lengths, and by dividing out the dimension factor 

used for conversion a CLD is generated. CLD and CAD 

curves were used to compare fractures from all five 

fracture groups combined, and are shown in Figures 9 and 

10 respectively. As the probability distributions that affect 

fracture geometry have mean values that define an 

elliptical disc or rectangular plane, the fracture surface 

area can be converted to a maximum trace length through 

simple algebra, 

 

Fig. 6. DFN model of rock volume surrounding Äspö TAS08 

Tunnel, showing deterministic fractures only, with fractures 

modelled as (a) rectangles, (b) ellipses, (c) mixed, and (d) all 

fractures transparently over tunnel wall. 

(b) 

(a) 

(c) 

(d) 

Fracture Groups 



 

  

𝐿 = 2 ∙  √
𝐴

𝜋
                            (3) 

 

and,    𝐿 =  √𝐴                              (4) 
 

where L is the maximum trace length and A is the reported 

fracture surface area. Eq. 4 applies to elliptical fractures 

and Eq. 5 to rectangular fractures. By modifying the CAD 

curve, an approximation of the representative CLD curve 

is determined which can be compared directly with input 

values. The use of both CLD and CAD distributions 

ensures that stochastic fractures honor the deterministic 

fracture intensities and that both types of fractures are 

honoring the input intensity values. 

 

 
Fig. 7. Intersections of modeled fractures (orange) and mapped 

fracture traces (blue) with TAS08 tunnel walls on (a) the back 

face and (b) the roof.  

 

Fig. 8. Wulff stereonets of deterministic fractures modeled near 

Äspö TAS08 tunnel, showing (a) the location of defined 

fracture groups, and the poles of modeled (b) rectangular 

fractures, (c) elliptical fractures, and (d) randomly mixed 

fractures including stochastics. 

5.3. Deterministic fractures 
The metrics generated by MoFrac allow for a direct 

comparison of mapped fracture traces to the traces that a 

DFN model would create on the same. By analyzing the 

results of the metrics report, any misfits to the model can 

be identified and inspected. 

The error in orientation is reported as an absolute value. 

The orientation error for each fracture group are weighted 

by the number of fractures, to give the mean error and 

associated standard deviation for the model. Results of the 

orientation error and a positional metric are presented in 

Table 3. 

The metrics report considers the orientation and location 

of fractures by comparing input with output attributes. 

The position of a fracture trace is compared spatially with 

the location of the input trace in three dimensions, using 

a method analogous to calculating the longitudinal root 

mean square error (LRMSE) (Anderson et al., 2014). 

 

Table 2. Comparison of mean input and output fracture group orientations. 

Fracture 

Group 

Input fracture 

orientation 

Deterministic 

fractures 

Deterministic 

fractures 

Deterministic 

fractures 

Stochastic    

fractures 

Rectangular Elliptical Mixed shapes Mixed shapes 

stereonet stereonet MoFrac reported MoFrac reported MoFrac reported 

Dip  
Dip 

direction 
k Dip  

Dip 

direction 
k Dip  

Dip 

direction 
k Dip  

Dip 

direction 
k Dip  

Dip 

direction 
k 

A 72° 20° 10 74° 22° 9 78° 31° 9 74° 19° 9 70° 20° 11 

B1 89° 121° 38 90° 127° 95 89° 126° 76 80° 129° 25 83° 121° 43 

B2 78° 86° 90 88° 105° 87 90° 102° 77 77° 87° 26 79° 86° 86 

H 21° 267° 26 25° 286° 23 25° 285° 21 31° 276° 9 27° 265° 25 

(a) 

(b) 

Fracture 

Groups 

(a) 

(d) 

A 
  

(b) 

B1 
B2 
H 
R 

(c) 



 

  

 
Fig. 9. Comparison of CAD curves for deterministic (by shape) 

and stochastic (mixed shape) fractures generated in the Äspö 

TAS08 tunnel DFN model. 

 
Fig. 10. Comparison of CLD curves for input, stochastic and 

deterministic outputs. Output CLD values are resolved to 

lengths from calculated surface areas and normalized to a 

horizontal plane by removing the dimension factor used to 

express intensity with depth. 

 

Table 3. Metrics analysis of DFN showing error associated with 

length, orientation and position of deterministic fractures in 

respect to their traces across the same surface. 
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Attribute, 

Metric 
Rectangular Elliptical Mixed 

Dip Direction, 

Absolute Error 
7.6° 8.4° 21. 3° 16.6° 12.2° 11.4° 

Dip, 

Absolute Error 
6.4° 5.4° 12.9° 10.4° 10.7° 13.3° 

Location, 

LRSME 
0.65 0.25 0.30 0.23 0.55 0.31 

 

 

5.4. Fracture geometry 
Geometric attributes of generated fractures are considered 

qualitatively. A range in strike to dip ratios creates a 

variety in fracture shapes regarding the aspect ratio, 

however all fractures should display a convexity. 

Fractures are shown in Figure 11 that demonstrate the 

variety in fracture geometry that MoFrac utilizes to create 

a DFN with a realistic appearance, as shown in detail with 

single fractures from each group. The degree of assigned 

roughness increases from (a) to (e). 

A DFN can be inspected be slicing on an inspection plane. 

The geometry of these traces can be compared with the 

field mapped fracture traces by comparing planes cut at 

different positions, but with the same orientation, within 

the domain. In the case of the Äspö TAS08 dataset, an 

intermediate face was mapped during the development of 

the tunnel. This allows for a direct comparison between 

the actual mapped fractures at this location to the traces 

of the stochastically generated fractures that pass through 

it. Figure 12 shows the location of the inspection plane 

with respect to the tunnel and shows both the mapped 

traces across this plane and the traces generated by 

MoFrac.  

 
Fig. 11. Examples of fracture shape and undulation from each 

fracture group (a)-(e). Fracture roughness increases with each 

group. 

Apart from the visual comparison, P21 value were 

calculated based on the total number of traces across the 

inspection plane. The overall P21 for the deterministic 

traces on the intermediate face is 0.79 m-1 and for the 

deterministic traces across the inspection plane was 

calculated as 0.94 m-1. The intensities of generated 

fractures were modified from the mapped intensities in 

two ways. The number of small fractures were reduced, 

and those with lengths under 1 m were eliminated 
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entirely. Large fractures were generated with a simulated 

trace length up to 25 m. The longest mapped trace on the 

intermediate face (15.74 x 7 m2) was 6.8 m. For this 

reason it is to be expected to calculate a higher P21 value 

for the stochastic fracture traces across the inspection 

plane than is calculated for mapped traces, in the case of 

this model the P21 value is 19% higher for the stochastic 

traces compared to the mapped traces. 

 
Fig. 12. Stochastic traces across the plane defining the 

intermediate face of the TAS08 tunnel. (a) The intersection of 

the inspection plane with the tunnel walls. (b) The entire 

inspection plane showing modeled deterministic (orange) and 

stochastic (green) fracture traces with known mapped fracture 

traces from the intermediate face (blue). 

 

Areas where mapped data was not complete, such as the 

tunnel floor, were analyzed by comparing the fractures 

modeled inside the tunnel when viewed from below. 

Figure 13 shows the interior of the tunnel both with only 

deterministic fractures and with stochastic fractures 

included. It can be seen that a large degree of infilling has 

occurred, while not generating any additional traces on 

the tunnel wall. This demonstrates the effectiveness of the 

nudging technique to control the location of stochastic 

fractures relative to the tunnel walls, preventing unwanted 

intersections. 
 

The degree to which known data, derived from mapped 

fracture traces, is honored, is shown through analysis of 

orientations, intensities and location. Elliptical shaped 

fractures tend to honor the location of the trace along the 

entire path better than rectangular shaped fractures. 

Conversely rectangular fractures tend to honor input 

orientation to a higher degree than the elliptical shaped 

fractures. Figure 14 shows the ten worst fit fractures from 

the models presented. The five worst fit fractures based 

on location are shown for the rectangular shape and the 

five worst fractures based on orientation are shown for the 

elliptical shape. 

 

 
Fig. 13. View from below the tunnel mesh showing (a) 

deterministic fractures only and (b) infilling due to stochastic 

fractures.

Fig. 14. The ten worst-fit fractures measured during modelling. 

Rectangular fractures shown in teal and elliptical fractures 

shown in pink with mapped fracture trace in red. 

6. CONCLUSIONS 

This case study and validation demonstrates the ability of 

MoFrac to generate realistic and conditioned DFN 

models. Using data mapped from SKB’s Äspö TAS08 

tunnel, DFN models were generated and presented. The 

DFN models were analyzed quantitatively and 

qualitatively regarding accuracy and appearance. 

DFNs generated by MoFrac are intended to honor 

information regarding the fractured rock mass used as 

input. Stochastic fractures are conditioned to known 

statistical data and are generated in areas of the 

experimental volume that have not been mapped, or 

where data has not been provided. The stochastic fractures 

generated match the intensities and orientations of the 

deterministic fractures from which they are derived.  

Orientations for deterministic fractures are shown to 

reflect the assigned input values with an accuracy of 90% 

or greater in terms of groups and with an accuracy of 80% 

or greater in terms of individual fractures. As modelled 

(a) 

(b) 

(a) (b) 



 

  

fractures are undulated during propagation and the 

reported orientation is determined from the completed 

fracture, it is expected that there would be an error 

associated with orientation when considered on a fracture 

by fracture basis. By first considering the reported 

orientations by group, given in Table 2, where the 

associated absolute error is generally below 10°, and 

comparing them to the mean error when considering 

individual fractures, which was calculated to be as high as 

21.3°, the effect of undulation is evident. This 

demonstrates that overall, the undulation parameters are 

affecting orientation on individual fractures but do not 

affect group orientations as significantly. This is due to an 

averaging of the associated error over the entire group. 

This is expected, as the known orientation values of a 

fracture are location dependent.   

DFNs generated using MoFrac can be integrated in 

numerical models to solve geo-engineering problems 

related to excavation stability, ground control, drilling 

and rock fragmentation, as well as related studies 

including groundwater flow, mass transport, induced 

fracturing. 
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