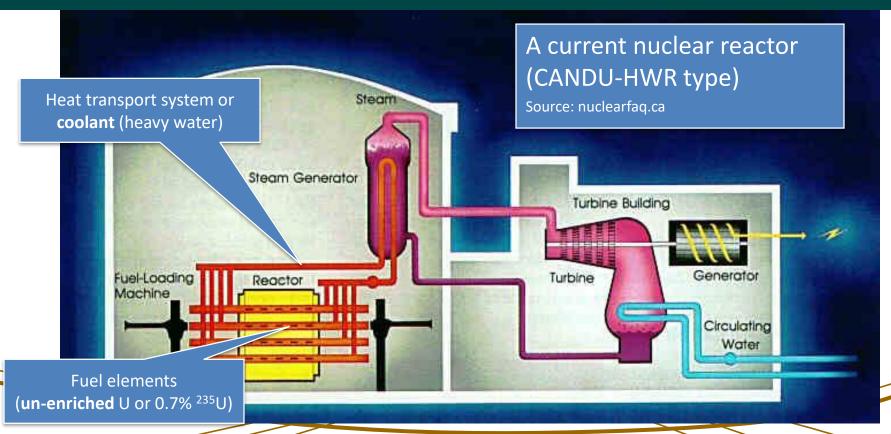
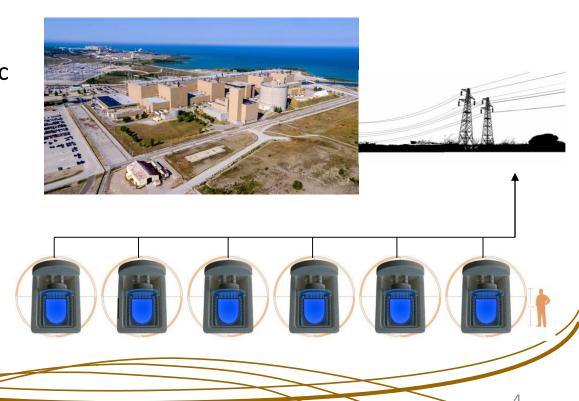
Small Modular reactors (SMRs) in remote areas: the needs for chemistry

By

François Caron^{1,2,4} and Vic Pakalnis^{3,4}

¹Bruce Power Chair for Sustainable Energy Solutions ²MIRARCO Mining Innovation, Director of the Energy Centre, ³MIRARCO President & CEO


⁴Laurentian University


SMRs: the needs for chemistry

- What is an SMR?
- The needs for SMRs
- The challenges and innovation for chemists
- Case study
- Conclusions

The World Nuclear Association (WNA) and International Atomic Energy Agency (IAEA) define: Large: > 700 MWe Medium: 300-700 MWe Small: 150-300 MWe Very small: <150 MWe

(typically: 3 MWth to 1 MWe)

Contrasts: large vs small

Large (Gen III, III+)	Small (Gen IV)
Economy of scale	Economy of multiples
One large station, single or multiple reactors	Several small reactors deployable in a fleet
Large fuel inventory	Small fuel inventory
Long construction times, reactors are often "tweaked" regular designs	Small "pre-fabricated" similar units in a factory setting (cutting on construction time)
Static, relatively large footprint	Small, self-contained units that can be moved in/out by land or by sea
Production and distribution via grid	Production at remote site; might not need extensive grid network

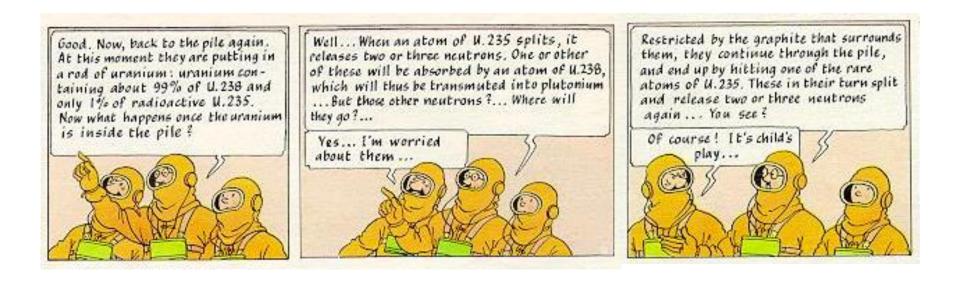
SMRs are not new: SMRs have been around the globe for 60+ years

Submarines and surface vessels

- >140 ships are powered by more than 180 reactors (about 200 as per Lloyd's registry)
- 12000 reactor-year experience
- In the US alone, 6200 r-y of accident-free operation involving 526 reactors over 240 million kilometers.

...plus trains, planes and automobiles...

USS Nautilus (SSN-571) 1955-1980, the first nuclear submarine Picture: Wikipedia



PM2A reactor at Camp Century, Greenland (1961-64): assembly of a SMR from prefabricated construction and transportation. Source: <u>https://apps.dtic.mil/dtic/tr/fulltext/u2/1064604.pdf</u> Picture: http://strangesounds.org/?s=camp+century

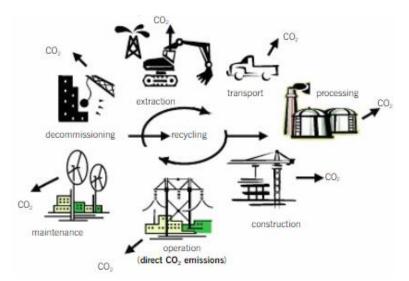
Source: World Nuclear Association

There are ~100 designs of SMRs under 4 general types:

Туре	Coolant	Fuel	Other (oper. temp., etc)
<u>B</u> WR or <u>P</u> WR	Light water (<u>B</u> oiling or <u>P</u> ressurized)	Lightly enriched U (~5%), 2-5 year typical refueling cycle	Up to ~374 °C; pressurized; low technological risk
HTGR	High temperature gas – He or CO ₂ , graphite mod.	Enriched U (up to 20%) or Th; TRISO pebble-type fuel replaced continuously, 5-10 yr cycle	Capable of 700-950 °C
Liquid metal (fast breeder)	Na, or Pb-Bi metal	Most "burn" ^{235 & 238} U, ²³² Th & An; no enrichment needed, refueling cycle up to 20 yr	~480-570 °C; 50+ yr oper. experience; atmospheric pressure
Molten salt (MSR)	Li-Be-F salts, some designs use Cl salts; cryolite compatible	Liquid salt core with U-Th-F; can "burn" ²³⁸ U and An; no enrichment; on-line refueling	700 → 1400 °C; atmospheric pressure; FP removed off-line

Fission reactors (thermal or slow neutrons)

$$^{235}_{92}$$
U + $^{1}_{0}$ n (thermal) $\rightarrow ^{139}_{56}$ Ba + $^{94}_{36}$ Kr + 3 $^{1}_{0}$ n + Q


Fast breeding reactors:

²³⁸U + n (fast)
$$\rightarrow$$
 ²³⁹U $\xrightarrow{\beta^{-}}$ ²³⁹Np $\xrightarrow{\beta^{-}}$ ²³⁹Pu \rightarrow \rightarrow ...

²³²Th + n (fast)
$$\rightarrow$$
 ²³³Th $\stackrel{\beta^-}{\rightarrow}$ ²³³Pa $\stackrel{\beta^-}{\rightarrow}$ ²³³U \rightarrow \rightarrow ..

The needs for SMRs

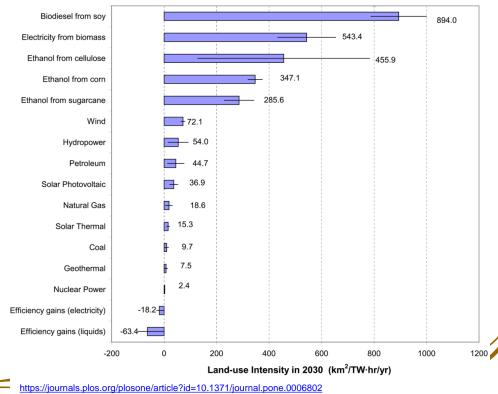
- Environmentally sound;
- Zero GHG emissions during operation;
- Passive safety features "walk-away" design;
- Economically sound;
- Deployment especially in remote areas (no need for distribution infrastructure and maintenance);
- "cookie-cutter" construction;
- Saves on transportation and exploitation costs

https://www.scribd.com/document/36210065/Carbon-Footprint-of-Electricity-Generation-ghg

The needs for SMRs

- Environmentally sound;
- Zero GHG emissions during operation;
- Passive safety features "walk-away" design;
- Economically sound;
- Deployment especially in remote areas (no need for distribution infrastructure and maintenance);
- "cookie-cutter" construction;
- Saves on transportation and exploitation costs

The Carbon Intensity of Electricity Generation All figures in g CO2eq/kWh 4 8 12 16 18 22 45 48 HHM^{dro} Ocean wind wicket Biometic Solar CP conternal solar Physical Cost of Cost

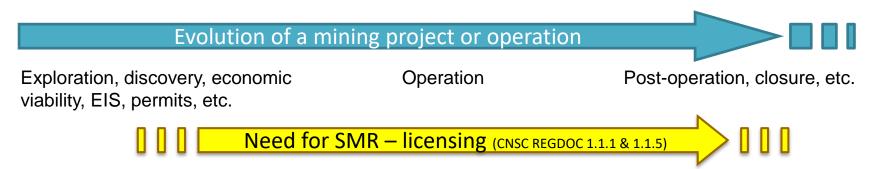

Note: Data is the 50th percentile for each technology from a meta study of more than 50 papers Source: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation

shrinkthatfootprint.com

http://shrinkthatfootprint.com/greenest-electricity-source

The needs for SMRs

- Environmentally sound;
- Zero GHG emissions during operation;
- Passive safety features "walk-away" design;
- Economically sound;
- Deployment especially in remote areas (no need for distribution infrastructure and maintenance);
- "cookie-cutter" construction;
- Saves on transportation and exploitation costs



McDonald et al., Plosone.org, V4 Pe6802 (2009)

Evolution of a mir	ning project or operation	
Exploration, discovery, economic viability, EIS, permits, etc.	Operation	Post-operation, closure, etc.
🛛 🗋 🔛 Need for S	MR – licensing (CNSC REGDOC 1	I. <u>1.1 & 1.1.5)</u>

Mine operator identifies energy needs:

- Contacts reactor operator, responsibilities are defined in an MOU
- Both licensing & permit processes can be done in parallel
- SMRs: at the stage of proven concept (after demonstrations; "de-risked")
- Example of case study (\rightarrow)

Proponent (vendor/operator):

- Information gathering;
- Apply site evaluation process, all applicable regulations;
- Baseline characteristics may be already available from exploration data

Application for license:

- Procedures are established;
- Maintain information during lifecycle

Post-operation:

- Mine and SMR post-operation have different timelines and requirements (MOU);
- SMR: decommissioning and environmental monitoring

There is a need for chemists and scientists at all stages!!

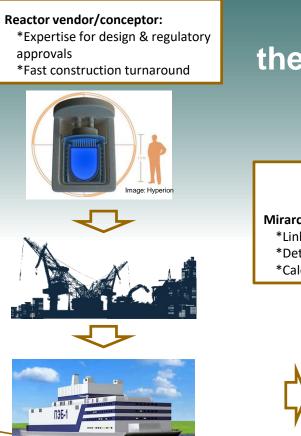
Currently, there are:

~100 potential SMR vendors at different stages of conception 11 vendors at various stages of review with the CNSC*

 Possibility to "fast-track" regulatory reviews from other jurisdictions 3 applications: invitation to site SMR demonstration units by CNL (as of February 2019)

- This is multi-tier rigorous process: it involves prequalifications on the merits of the design, financial, technical, security aspects
- Advanced stages involve risk management, execution, testing, operation, etc.

See: wna.org


Ontarioenergyreport.ca (Hatch SMR report) *CNSC: Canadian Nuclear Safety Commission

See CNL.ca

The "new" chemistry:

- "boots-to-the-ground" in preassessment and exploration;
- Remote operation of SMRs and pretested measurement methods;
- Some SMR designs require additional research;
- Lifetime opportunities as a part of the CNL invitation process

Case study: the SMR Barge project at a remote mine

Mirarco's role and vision:

*Linking all

*Detailed business plan

*Calculations of environmental and dollar footprints

Mining Client (for ex.: near-shore): *Expertise and ethical exploitation *Existing First Nations involvement

Experienced Operator:

*Licensing and operation *Waste management & Decommissioning

Shipping barge: expertise in designing offshore platform development for commercial nuclear power generation

Case study: the SMR Barge project at a remote mine

SMR at remote mine:

- Agreement with operator/provider
- SMR is used, re-fueled as needed (5-20+ years, depending upon design);
- Carbon savings over diesel for a mining project: a 20 MWe SMR can save annually \$15 M and avert 140 ktons of CO₂ emissions (also averting fuel transport & footprint, plus the cost of a generator)*

Removal or recycling off-site, easy decommissioning and/or waste management.

*unpublished MIRARCO business case

Conclusions

The future is here

- SMRs and Gen-IV reactors represent a new and exciting opportunity: environmental, energy mix for the future, potential for waste reduction;
- SMRs are an attractive solution for remote communities: deployment, carbon savings, no need for an extensive distribution network;
- This is a new innovation opportunity for chemists and scientists:
 - Prequalification, operation, decommissioning;
 - New on-line and remote chemistry, streamlining analytical capabilities;
 - Be at the forefront of larger global environmental issues, e.g., life cycle analysis, energy portfolios, climate change, etc.
- MIRARCO's role: identify gaps scientific research economic assessment linking mining clients to SMR vendors case studies

Acknowledgements and further readings

Innovation at work

- MIRARCO.org (watch video under "Centers → Energy")
- CNSC search for:
 "Pre-Licensing Vendor Design Review"
 "REGDOC-1.1.5"
 "REGDOC-1.1.1"
- SMR roadmap: smrroadmap.ca
- CNL expression of interest: search for "Perspectives on Canada's SMR opportunity"