
 

1. OVERVIEW 

A discrete fracture network (DFN) maps the location of 

discontinuities within a rockmass. MoFrac DFN 

modeling software has been developed based on the 

methodologies of FXSIM3D (Srivastava, 2006). Using 

MoFrac, a deterministic fracture can be modeled using 

data from a mapped trace and a stochastic fracture can be 

created using attributes conditioned to known data. A 

hybrid model of a DFN includes both types of fractures. 

Stochastic fractures infill where data is not reliable or 

where mapping has not occurred within a model domain. 

This study examines the conditioning and consistency of 

stochastic fractures generated by MoFrac. 

From a fracture trace mapped on a surface, the 

propagation of a deterministic fracture is guided by 

conditioning variables such as orientation, strike to dip 

ratio, and size. All realizations of deterministic fractures 

intersect traces on the mapped surface, however the 

realizations diverge according to the variance specified by 

assigned input variables. In MoFrac, stochastic fractures 

can be generated using three alternative methods related 

to the definition of fracture intensity and size. 

A cumulative length distribution (CLD) can be measured 

directly from an input dataset and used as an input for 

conditioning stochastic fractures to observed intensities. 

The CLD approach works well when all fractures are 

seeded from a single plane; for example, a surface study 

where no fractures are seeded at depth. When considering 

a rockmass volume, and in order to use CLD values 

measured on a surface, fracture intensities must be 

modified to reflect the depth of the model. This approach 

generates a model constrained by a three-dimensional 

length distribution. 

Alternatively, a cumulative area distribution (CAD) can 

be used as an input for defining stochastic fracture 

intensity. This method is suited for seeding fractures 

within a volume of rock, however measuring this value in 

situ is difficult. The surface area of a fracture is generally 

unknown and must be derived either through pre-

processing or by analysis of a simple DFN generated from 

the mapped data (Dershowitz and Herda, 1992; Niven and 

Deutsch, 2010; Lei, et al., 2017). 

This study considers both types of size distributions to 

define stochastic fracture intensities constrained to an 

input dataset. The consistency of the DFN models 

generated and the degree of constraint is examined. 

Fracture orientations, sizes, and intensities are compared 

for multiple realizations of DFNs. The derivation of CLD 

and CAD values are presented and the MoFrac-generated 

DFNs are analyzed to confirm realization of input 
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ABSTRACT: MoFrac discrete fracture network (DFN) modeling software generates fracture network simulations with deterministic 

fractures constrained to known locations, and stochastic fractures conditioned to input data. A deterministic fracture network is 

generated through the modeling of a dataset that is representative of the lineaments typically found in a Canadian Shield environment. 

This model is used to constrain stochastic representations to observed fracture intensities and orientations. This study considers two-

dimensional and three-dimensional length distributions and area distributions as constraints. Built-in metrics are used to analyze the 

size and orientation distributions of the stochastic models for comparison with the input data. Further calibration of constraints for 

these models is achieved by dividing fracture groups into subsets; this preprocessing task involves the definition of subsets of 

identified fracture groups based on orientation. The consistency and accuracy of the fracture network modeling are considered using 

three alternative conditioning methods. It was shown that generated fracture networks conform to the conditioning parameters for 

each method considered. Where multiple subsets were used to define fracture group parameters, resulting DFNs were more 

representative of the input data. 

MoFrac discrete fracture network (DFN) modeling software generates fracture network simulations with deterministic fractures 

constrained to known locations and stochastic fractures conditioned to input data. A deterministic fracture network is generated 

through the modeling of a dataset that is representative of the fracture traces typically found in a Canadian Shield environment. 

This model is used to constrain stochastic representations of the input data. This study considers two dimensional and three 

dimensional length distributions and area distributions as constraints. Built-in metrics are used to statistically analyze the size and 

orientation distributions of the stochastic models for comparison with the input data. Further calibration of constraints for these 

models was achieved by dividing fracture groups into subsets. This preprocessing task involves the definition of subsets of 

identified fracture groups based on orientation.  The consistency and accuracy of fracture network modeling are considered using 

the three alternative conditioning methods. It was shown that generated fracture networks conform to the conditioning parameters 

for each method considered. Where multiple subsets were used to define fracture group parameters, resulting DFNs were more 

representative of the input data. 
 

 

 

 

 

 

 

 



variables. A dataset designed to be representative of the 

Canadian Shield is used to generate a deterministic DFN 

and to constrain the stochastic networks that are 

subsequently generated. 

 

2. CANADIAN SHIELD DATASET 

The dataset used to model deterministic fractures was 

developed to be a realistic approximation of the 

expression of fractures on surface in a setting typical of 

the Canadian Shield. This dataset was developed for the 

Third Case Study of the deep geological repository 

technical program of Ontario Power Generation 

(Gierszewski, et al., 2004). The Third Case Study dataset 

was derived from a group of surface lineaments 

interpreted from an aerial photograph shown in Figure 1; 

additionally, simulated fracture traces are incorporated 

into the network to match fracture intensities recorded at 

a separate and representative location (Srivastava, 2002). 

The final dataset, shown in Figure 2, covers 

approximately 200 km2 of land that is representative of a 

typical section of the Canadian Shield. 

 

Fig. 1. Automatically detected surface lineaments 

superimposed on a composite aerial photograph; used to 

generate the Canadian Shield dataset (Srivastava, 2002) 

 

3. MOFRAC SOFTWARE 

MoFrac DFN modeling software generates a fracture as 

an approximately equilateral, tessellated triangular mesh. 

A deterministic fracture is propagated from a surface 

lineament guided by values for orientation, size, and 

shape sampled from distributions derived from the input 

data. Stochastic fractures seeded using a length 

distribution originate from a simulated trace and are 

propagated in an analogous method to deterministic 

fractures. When using an area distribution, stochastic 

fractures are seeded from a single point and propagate 

concentrically to form a tessellated mesh. Junkin et al. 

(2017) described, in further detail, the fracture 

propagation process of the MoFrac software. 

Measured orientations are assigned to a mapped fracture 

trace; for this study the strike is measured from the data 

as the direction of a straight line segment between 

terminal points of a trace and dip angles are set to 90° for 

all fractures. 

 

Fig. 2. Integrated Canadian Shield dataset including simulated 

fractures shown with surficial water features (Srivastava, 2002) 

 

Stochastic fractures are seeded in one of three ways. 

When using the CAD intensity input, a fracture is seeded 

randomly within the volume and is assigned a target 

surface area and orientation. The fracture propagates 

concentrically from a central point until the assigned 

surface area is reached. When using the CLD intensity 

input, a fracture is seeded randomly on a horizontal plane, 

and the assigned size governs the length of the seed trace. 

The fracture then propagates using the same process as for 

deterministic fractures. When it is desired to have 

fractures seeded at random depths in a three dimensional 

domain, the CLD intensity input can be used where the z 

value is randomized. For this case, input intensities are 

multiplied by a factor related to the model depth as a 

function of mean trace length. The increased intensity is 

distributed throughout the model domain with the goal of 



any measured plane having P21 values constrained to the 

mapped data. 

 

4. DFN PARAMETERS 

Four sets of DFN models are analyzed in this study - fifty 

realizations each of: (i) deterministic models based 

entirely on the Canadian Shield dataset, (ii) stochastic 

models with intensities derived from the measured CLD 

and seeded entirely on surface, (iii) models with 

intensities derived from the CLD and seeded throughout 

the domain, called the CLDz model, and (iv) models with 

intensities derived from the CAD that are seeded 

throughout the domain. 

4.1 Fracture Orientation 

Only the spatial locations of the fracture traces were used 

as an initial input for DFN modeling. To determine 

fracture orientations, a preliminary deterministic model 

was generated with four fracture groups (strikes of 0°, 90°, 
180°, and 270°). The results of this model are shown in 

Figure 3 with a Wulff stereonet of the orientations created 

using Dips version 6 (Rocscience, 2016). Two fracture 

groups were identified on this stereonet and the strikes 

were interpreted to be 298° and 240°. 

 

Fig. 3. Preliminary DFN model based on the Third Case Study 

dataset with Wulff stereonet showing measured dip directions. 

 

4.2 Fracture Intensity and Size Distributions 

The Third Case Study dataset consists of 553 fracture 

traces ranging in size from 68 to 15,000 m. Two 

orientation groups were identified through the 

preliminary modeling. Group 1 consisted of 272 fractures 

with a strike of 298°; group 2 consisted of 281 fractures 

with a strike of 240°. The calculated CLD curve is shown 

in Figure 4. The surface area of modeled fractures was 

determined based on the initial deterministic DFN. 

Surface areas ranged from 2,000 to 45,000,000 m2. As the 

input data only gives fractures that intersect with the 

surface, two CAD curves are presented. The CAD2k 

curve considers the entire model to a depth of 2000 m and 

the CAD68 curve considers only the uppermost 68 meters 

of the volume. This sample of the model domain ensures 

that every fracture is represented along any horizontal 

plane. The input intensity when considering CAD 

distributions should thus be between these two 

distributions. The calculated CAD curves are shown in 

Figure 5. 

Input intensities for DFN modeling were derived from the 

measured intensity curves. For fracture intensities derived 

from the CLD curve, a multiplier must be used if it is 

desired to have fractures seeded throughout the 

experimental volume (Junkin et al., 2017). The factor 

used as a starting point for converting fracture intensities 

from a CLD curve to an input related to an experimental 

volume (CLDz) is derived by considering the model depth 

and the mean trace length for each identified group. 

CLDz = CLD × (
model height

mean trace length 
)          (1) 

The multiplier is applied to both ends of the CLD input 

curve; the initial curve is fit to the power law regression 

line of the measured CLD curve. The power law has been 

shown to be a representative approximation of measured 

intensity distributions for fracture networks (Bonnet et 

al., 2001; Neuman, 2008). The derived input intensity for 

the minimum size of fracture is the intersection of the 

power law regression line to the data, and the intensity for 

the maximum size is the point on the same regression line 

that matches the largest measured fracture. The input 

values for the CLD models and for the CLDz models, 

where the factor shown in Equation 1 is used, are shown 

in Figure 4. 

 

Fig. 4. CLD and CLDz input intensities for stochastic models 

as derived from measured CLD curve from preliminary model. 

 

For the DFN models generated with intensities from a 

CAD function, input values were derived from 

distributions describing the deterministic data set 

throughout the whole volume (CAD2k). To derive input 

intensities from the CAD, the surface area values used as 

nodes on the CAD curve were doubled to account for 

modeling elliptical fractures (as opposed to semicircular 

in the preliminary runs where fracture surface area was 

initially measured). The intensity value was also modified 

by a factor equivalent to that used for the CLDz model in 

order to account for the size of the fracture related to the 

volume in which the CAD was measured. The CAD 

multiplier used is given by Equation 2. 
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CADinput = CAD × (
model height

2 × √mean fracture area
𝜋⁄  

)       (2) 

The final intensities used for stochastic modeling based 

on the CAD distribution for the Canadian Shield dataset 

are shown in Figure 5. Table 1 summarizes the benefits 

and consequences of the three methods used to constrain 

fracture size and intensity; a brief description of the 

seeding process is included. 

 

Fig. 5. CAD input intensities for stochastic models as derived 

from measured CAD curve from preliminary model. 

 

4.3 Additional DFN Parameters 

Fracture orientation and intensity are conditioned to 

deterministic data; however, additional DFN parameters 

are required for modeling. The undulation of fractures is 

controlled through a parameter that is selected by visually 

matching fractures in the dataset to stochastic fractures 

with the same waviness. This parameter can be derived by 

measuring the sinuosity of a fracture group. The 

undulation parameter was derived for each group and was 

kept constant between all models described in this study, 

as were other geometric variables including truncation 

probabilities, strike to dip ratio, TAC (terminal area 

constraint) factor, scaling and shape. The values used for 

these parameters are given in Table 2. The strike to dip 

ratio determines the geometry of the guiding shape for the 

fracture, and the TAC factor determines the location of 

the mapped trace on the guiding shape. A strike to dip 

ratio of 1 and TAC factor of 1 results in circular disc 

shaped fractures with the fracture trace as the central 

chord. Fractures with these parameters are modeled as 

semi-circles when traces are located on a boundary of the 

model as in a surface study. 

Fifty DFN models were generated for each of the four 

types of models described. All blocks have the same 

dimensions, 13,725 × 14,550 m2, matching the 

deterministic dataset. The models are extended to a depth 

of 2,500 m. 

 

5. ANALYSIS OF DFN MODELS 

Fifty realizations of each of the four types of models were 

generated. Orientations, intensities and fracture size were 

analyzed, with consideration of variance between the fifty 

realizations. The observed output was compared directly 

to the input parameters used for modeling. The results 

from each type of model will be presented in the four 

subsections that follow. Figure 6 considers, for a 

randomly selected realization, the CLD and CLDz inputs 

for stochastic models in comparison with the actual 

intensities by group. For the CLDz models, input intensity 

is a measure of the intensity derived from the lengths of 

all fracture traces within the model projected onto the 

surface. Figure 7 considers the CAD input for stochastic 

models and actual intensities from another randomly 

selected realization. 

The orientations for all fifty realizations consistently 

matched the input orientations. Cumulative Wulff 

stereonets are presented in Figure 8 for each of the four 

types of models considered. It should be noted that, for 

strikes of 0° and 180°, there is an under-representation of 

fractures in the stochastic models, as only two fracture 

groups were used. In order to create the same clustering 

of fractures around the two dominant orientations and 

have representation of the fractures with random 

orientations included in the model, additional fracture 

groups are required. 

Figure 9 shows single realizations of each model type 

with inspection planes taken at surface and at -500 m. The 

inspection plane at depth is used to demonstrate the 

usefulness of a DFN model based on surface mapping for 

predicting fracture intensities at depths relevant to the 

workings of an underground mine or a deep geological 

repository. P32 values of the whole models are considered 

as well as P21 values for each of the inspection planes. 

These measures are independent of scale and useful as 

metrics to consider the constraints applied to the DFN 

models (Dershowitz and Herda, 1992). 

5.1 Deterministic Models 

Fifty realizations of a deterministic model were generated 

in addition to the stochastic models. The orientation of 

fractures that is reported by MoFrac as measured on 

surface is consistent between realizations. 

The consistency in orientations between deterministic 

models is due to the constraints of surface traces for all 

fractures. The ability of MoFrac to match a trace location 

is assessed through a built-in metric that considers the 

longitudinal root mean squared error (LRMSE) between 

the input trace and the trace representing the modeled 

fracture on the same surface (Anderson and Ames, 2013). 
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Fractures were consistently modeled with location errors 

ranging between approximately 2 and 300 m. Five of the 

eight largest fractures had the largest location errors. The 

location error showed a scale dependency, with the 

highest 25 location errors measured from fractures in the 

first 100 when considering trace length. A mean location 

error of 14.4 m was calculated for the fifty realizations, 

with a standard deviation of 27.3 m. 

Table 1. Methods used to constrain fracture size and intensity 

to DFN models representing the Canadian Shield dataset. 

DFN 

Model 

Fracture 

Seeding 
Benefit Consequence 

CAD 

Fractures are 

seeded at  a 

random point, 

propagating 

concentrically 

Fractures are 

not 

constrained by 

an arbitrary 

trace 

 

Interactions 

between 

boundaries and 

simulated 

traces do not 

occur 

Size 

distributions 

must be 

derived that 

apply to a 

volume  

 

Seed points 

close to 

boundaries can 

result in 

malformed 

fractures 

CLD 

Fractures are 

seeded from a 

simulated 

lineament on 

the z = 0 

plane 

Fracture 

intensities are 

applied in the 

same 

dimension that 

they are 

measured 

 

A DFN model 

similar to 

mapped data is 

generated 

 

Fractures are 

only modeled 

as seeded on a 

single plane 

within a model 

 

No fractures 

are seeded at 

depth, as such 

intensities 

drop 

considerably 

with depth 

CLDz 

Fractures are 

seeded from a 

simulated 

trace on any 

plane within 

the model 

Applied 

fracture 

intensities are 

modified 

directly from 

mapped data 

 

Fracture 

intensities are 

consistent 

regardless of 

depth 

Fractures can 

be seeded at 

any depth but 

traces are 

always 

orientated 

horizontally 

 

Simulated 

traces are 

treated as 

deterministic 

traces  

 

 

 

 

Table 2. DFN modeling parameters that are consistent between 

all models. 

DFN parameter Value 

Probability of truncation 1  between subgroups and 

regions 

0   between groups 

Strike to dip ratio 1 (preliminary runs) 

0.25-4 (final runs) 

TAC factor 1 (preliminary runs) 

1-4 (final runs) 

Scaling 16-32 elements per fracture 

(preliminary runs) 

1000-2000 elements per 

fracture (final runs) 

Shape All fractures are elliptical 

Undulation 
Group 1 sinuosity 1.029 

Group 2 sinuosity 1.025 

 

The intensities measured in Figure 9 demonstrate that, 

when only deterministic fractures are included in a model, 

a drastic decrease in intensity is observed at depth in all 

realizations. This is shown both by P32 values for the 

entire models and by comparing P21 values at surface and 

a depth of 500 m for each model type. This is expected, 

as fractures are only seeded on the surface of the CLD 

model with fracture intensities constrained to mapped 

intensities. Borehole data, if available, can constrain 

intensities with depth. 

 

 
Fig. 6. Input intensities for stochastic models derived from the 

measured CLD with actual CLD curve measured from 

representative models. 
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Fig. 7. Input intensities for the stochastic model derived from 

the measured CAD with measured curve from a representative 

model. 

 

5.2 Stochastic DFN models 

Fifty realizations of each of the three types of stochastic 

models were generated for analysis. The location of each 

fracture is randomized, so a location metric is not 

applicable. The orientations of fractures generated were 

shown to be consistent between all realizations. Although 

the calculated fracture groups are consistent, there is a 

difference noted in the ratio between the numbers of 

fractures in each group. This effect is exacerbated in the 

models that consider fractures seeded throughout the 

model, demonstrating that it is a cumulative effect. 

Consideration should be given to this effect when fracture 

groups with large ranges in size are modeled together 

using MoFrac. The variance in intensities between all 

realizations of stochastic models are shown in Figure 10; 

these are compared with the variance in intensities 

between the deterministic realizations. The variation in 

P21 values at surface and at a depth of -500 m are 

considered for all models generated. 

5.3 Two Dimensional Length Distribution Model (CLD) 

Fractures are only seeded on surface in the CLD model; 

this matches the deterministic data in terms of the planar 

location of fracture centroids. As no fractures are seeded 

at depth, the decrease in intensity with depth observed in 

the deterministic models is also observed in the stochastic 

models. With a strike to dip ratio randomized from 0.25 - 

4 and a TAC factor randomized from 1 - 4, there is 

variance between the models. This variation was used for 

all deterministic and stochastic models. 

The observed decrease in intensity with depth is 

unavoidable and matches the deterministic data. Intensity 

levels thus match the deterministic model on surface and 

at depth, as shown in Figure 9. This is useful when 

stochastically filling areas adjacent to a mapped block, in 

order to mimic the limitations of mapping occurring only 

on surface. Fracture intensities and size are considered in 

Figure 6. No fractures are generated with a size greater 

than the maximum value for the CLD input. There are 

fractures with lengths of 50 m—shorter than the minimum 

input length of approximately 300 m. The inclusion of 

fractures with lengths shorter than the minimum input 

value is due to the truncation of fractures. These truncated 

fractures result in a CLD curve that is very similar to the 

measured curve used as a constraint. 

 

Fig. 8. Cumulative Wulff stereonets showing fracture pole 

densities for (a) deterministic models, (b) CAD stochastic 

models, (c) CLDz stochastic models, and (d) CLD stochastic 

models. 
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Fig. 9. DFN with measured P32 values and inspection planes 

with measured P21 values at z = 0 and z = -500 for (a) 

deterministic model, (b) CAD stochastic model, (c) CLDz 

stochastic model, and (d) CLD stochastic model. 

5.4 Three Dimensional Length Distribution Model 

(CLDz) 

The CLDz models use a modified CLD input with a 

randomized depth value that falls within the model 

domain. The observed orientations are consistent between 

all models, and the inclusion of fractures with lengths less 

than the input threshold is also observed. Comparing the 

curves from inspection planes on surface, shown in Figure 

6, it can be seen that the CLDz curve shows a higher 

proportion of larger fractures in the midrange of the 

distribution. The ultimate length is constrained to the 

maximum CLD value, although fractures with a slightly 

longer trace length on surface are observed. The increased 

intensities in the midrange of the distribution can be 

attributed to large fractures that are seeded at depth that 

propagate to the inspected surface. These fractures are not 

limited to a partial ellipse as are fractures seeded on 

surface that are truncated against the z = 0 boundary. This 

effect also contributes to the increased intensities 

observed for both stochastic models with seeding 

throughout the volume. The distance a fracture propagates 

from a trace is limited by the strike to dip ratio and TAC 

factor, and these input values should be considered when 

deriving intensities to fill a volume. 

 

Fig. 10. Variance of intensities for deterministic and stochastic 

models at z = 0 (denoted as 1) and z = 500 (denoted as 2). 

5.5 Area Distribution Model (CAD) 

Although the CAD values were measured from the 

preliminary DFN, the input values required modification 

to account for the fact that all of the fractures were 

mapped on a single surface. Any fractures that exist in the 

rockmass that do not intersect the surface are not 

included, so there is an expected intensity decrease as the 

measured volume is increased. To account for this, a 

factor analogous to that used to generate the CLDz values 

was applied to the measured CAD values. The generated 

CAD and CLDz models are very similar and show the 

same characteristic increase in intensity, as fractures that 

are seeded at depth can propagate to a full ellipse, unlike 

surface fractures. Figure 7 considers a measured CAD 

curve in comparison to input values. It should be noted 

that, when using the CAD function for intensity input, 

fractures are seeded according to their sampled size. This 

means that fractures are not truncated on regional 

boundaries. This results in no fracture sizes less than the 

minimum input used as a constraint. Although the input is 

honored, the resulting CAD curve is different from the 

deterministic CAD curve, as fractures shorter than the 

minimum threshold are not included. Orientations are 

again consistent between models, with the same change 

in the ratio of fractures in groups as observed with the 

CLDz models. The under-representation of fractures with 

random orientations is also observed, and can be 

remedied by including additional fracture groups. There 
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is an identifiable similarity between the effects of the 

factor used to modify input intensities for both CLD and 

CAD inputs. This factor is reasonable and approximates 

required intensities for DFN modeling based on mapped 

surfaces. Further study into the dimensional 

independence of this factor is warranted. 

5.6 Improving constraints with additional preprocessing 

In order to account for some of the discrepancies observed 

between the deterministic models and the stochastic 

representations in this study, a supplementary DFN model 

was generated. This model was constrained with an 

additional fracture group to represent the random 

fractures observed in the Canadian Shield dataset. Two 

subgroups were also identified for each defined fracture 

group, based on size. This allows for differences in 

orientation and slope of the intensity input relative to 

fracture size. The purpose of this process is to generate a 

DFN model that is constrained to the deterministic data to 

a higher degree. A CLDz model was chosen for this 

process, as smaller fractures than the minimum size 

threshold are included in the model, resulting in a closer 

approximation to intensities observed in the input dataset.  

The resulting DFN model is shown in Figure 11. The 

random group is assigned a strike of 8° and the fracture 

groups from the previous model with strikes of 298° and 

240° are retained for the modeling. Revised fracture 

intensity inputs are shown in Figure 12, with the measured 

values from the DFN model for comparison. The factor 

given in Equation 1 is applied separately to both the small 

and large fractures. This results in a distinct slope for each 

subgroup. The deterministic intensities used to define the 

constraints are included in Figure 12 for comparison. 

Note that the input intensities for the CLDz model are 

higher than the observed intensities on a plane. The 

difference between these intensities is a function of model 

depth. This is demonstrated in Figure 6 where input 

intensities are calculated for both CLD and CLDz models 

from a mapped surface. 

Fractures with a trace length less than the minimum 

threshold are again observed, and measured intensities are 

constrained to the inputs. The effect of an increased 

density due to fractures propagating to the area of the 

guiding shape is reduced slightly. This is demonstrated by 

the CLD curve in Figure 12 and measured P21 values at 

surface and depth in Figure 11. 

The resulting stereonet from the improved DFN model is 

shown in Figure 13. The additional preprocessing and 

definition of a random fracture group results in a stereonet 

that better approximates the measured orientations. The 

ratio of fractures between the two main fracture groups is 

well constrained with the addition of the third fracture 

group. The under-representation of random fractures is 

still evident but to a lesser degree. The difference in slope 

for the CLD for small and large fractures of each group 

results in a measured distribution that modifies the 

generalized power law relation for a single fracture group. 

 

6. DISCUSSION 

For all fifty realizations, deterministic models were 

consistently constrained by the location of the input 

traces. A low variance in intensities at surface and depth 

was observed between the realizations. 

Orientations were constrained by the fracture traces. 

Analyzing the reported LRMSE values for all 

deterministic runs, the fracture demonstrating the worst fit 

was consistently fracture 8. The tessellation of the fracture 

surface during propagation and the guiding shape 

contribute to slight changes in LRMSE values between 

models. As a fracture propagates, elements at depth must 

be connected to elements that are constrained at surface 

and, to maintain the integrity of the meshed surface during 

this process, variations in the fracture’s trace at surface 

are observed. Figure 14 shows the input trace for fracture 

8 with ten realizations from deterministic models. The 

realizations, when superimposed, demonstrate similarity 

regardless of differences in calculated LRSME values. 

Because fracture 8 demonstrates an unusual geometry in 

that the direction changes by almost 360°, MoFrac is 

unable to fit a suitable guiding shape to the trace that 

would allow for a match with the generated fracture. In 

cases such as this, fractures must be dealt with on an 

individual basis. For fracture 8, it would be sufficient to 

break the trace into two components and model them 

separately in order to have an accurate representation at 

depth. 

 

Fig. 11. DFN model generated with parameters derived from 

additional preprocessing. 

The three stochastic models showed consistency between 

realizations, and are limited by the amount of 

preprocessing before modeling. When comparing the 

results of the three methods to constrain size and intensity, 

two major differences between models are identified. 

When using a CLD input that is not modified from the 

measured values, a DFN is generated that matches 

mapped data accurately. The decrease in intensity with 
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depth is reproduced, as fractures are only seeded on the 

surface of the model. If it is desired to match mapped data 

as accurately as possible, this method is sufficient. 

Intensity constraints are simple to calculate and are 

reflected throughout the volume. 

Where it is desired to have intensities at depth that are 

representative of mapped data on a surface and are 

consistent, it is necessary to seed fractures throughout the 

volume. This can be achieved using the CLDz or CAD 

intensity input. When using a CLDz input, fractures 

smaller than the minimum threshold are included in the 

resulting model due to truncations at boundaries. This is 

useful when constraining stochastic intensities to mapped 

fractures using a power law regression line. Smaller 

fractures can often be under-represented due to mapping 

bias, and the measured intensities are often less than a 

power law regression line would suggest. The mapping 

bias associated with larger fractures in relation to the size 

of the mapped domain is reproduced with the CLDz and 

CAD models as a function of the input intensity for the 

largest fractures. 

 

Fig. 12. Measured intensity on surface of DFN model generated 

with parameters derived from additional preprocessing in 

comparison to measured deterministic intensities. 

 

It is shown that additional preprocessing of data allows 

for a more constrained DFN model. This is useful when it 

is desired to match input data as accurately as possible. If 

mapped data is used to simply guide the constraints, it is 

shown that constrained DFN models can be generated 

consistently. When constraining stochastic DFN models 

to mapped data from a single plane, such as with surface 

mapping, using the CLDz approach is recommended with 

MoFrac. This is because intensity values are derived 

directly from the input data and smaller fractures than the 

minimum threshold are included in the resulting models. 

For a more accurately constrained stochastic DFN model, 

constraints should be applied with the highest degree of 

precision available with respect to the time budgeted for 

parameterizing the model. 

 

Fig. 13. Wulff stereonet representing fractures of DFN model 

generated with parameters derived from additional 

preprocessing 

 

 

Fig. 14. Input trace for fracture 8 and the resulting fractures 

from ten separate DFN realizations of the deterministic data. 
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