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HEURISTIC OPTIMIZATION OF SCHEDULING SCENARIOS FOR ACHIEVING 

STRATEGIC MINE PLANNING TARGETS 

 

ABSTRACT 

 

An optimization process is described that can be systematically applied by mine planners to 

produce life-of-mine schedules aligned with their strategic targets, while maximizing the net present value 

of the mining operation.  The software tool employed uses heuristics and an evolutionary algorithm to 

generate life-of-mine schedules of production and development activities.  Generating such schedules is 

typically a very difficult task due to the large number of operational constraints that must be respected, and 

the vast number of alternative schedules; as a result the value of the mining operation can be compromised. 

With an expansion at Newmont’s Leeville mine in Nevada, the mine planners were given the task 

of producing feasible life-of-mine schedules with significantly increased production rates. Their initial 

efforts indicated that it would be a considerable challenge to generate such schedules in a timely manner. 

By systematically applying the proposed optimization process, the mine planners were able to generate 

optimized life-of-mine schedules with the desired production rate. 
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INTRODUCTION 
 

Newmont Mining Corporation is a gold producer with a major presence in northern Nevada, 

where it owns approximately 2.5 million acres of land.  One of these properties, the Leeville underground 

mining complex, shown in Figure 1, is the subject of this case study.  The mine is accessed via a shaft, and 

consists of three major deposits in an area of mineralization called the Carlin Trend: West Leeville, Four 

Corners and Turf, at a depth of 1,400 to 2,100 feet.  The primary mining methods are conventional long 

hole stoping, blind bench stoping, Avoca stoping, and up hole stoping.  One of the main scheduling 

difficulties being carefully managed at Leeville is the provision of adequate ventilation for the dilution of 

contaminants in the active headings (Arya, Hartery, Danninger, Chik, Moorhead, Loup, & Smith, 2012; 

Arya & Terrillion, 2012). 

Gold ounces and net present values (NPVs) presented in this paper have been altered for 

confidentiality. 

 

 
 

Figure 1 –Newmont’s Leeville mining complex within the Carlin Trend (Ventilation management project 

at Leeville mining complex, 2013) 
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The stope and access layouts comprising the mine design are considered to be fixed for this study, 

and are provided as a set of discrete mining activities of fixed duration.  Each mining activity has 

properties including gold grade, mine area, tons, and feet.  An activity may have a scheduling constraint 

that specifies either a date before which it may not be excavated or an exact start time to be met.  The case 

study project consists of 26,179 mining activities, 2,593 of which have constrained start days. 

Constraints on the sequencing of mining activities, most often due to physical adjacencies, are 

represented by predecessor-successor links between pairs of activities.  For this project, the associated 

precedence rule was finish-start in all cases; that is, the scheduled start time of the successor activity must 

be no earlier than the predecessor finish time plus the specified lag. 

An activity may require one or more operational resources in order to proceed, and these 

resources may be constrained at the mine level.  For this case study, constrained operational resources 

included hoisting weight, access development length, and paste fill weight.  Additionally, there could not 

be two shaft development activities in progress at the same time, and there was a similar constraint on raise 

development activities.  Ventilation constraints were specified as limits on the numbers of activities in 

progress on a given level at any one time. 

The Schedule Optimization Tool, SOT, has been developed for optimizing the NPV of life-of-

mine schedules (Fava, Millar, & Maybee, 2011).  Every schedule generated by SOT adheres to all 

precedence constraints and operational resource constraints.  A financial model specifies capital costs, 

operating costs, projected mineral prices, and a discount rate to be used in evaluating the NPV of each 

schedule. The optimization makes use of customized heuristics and an evolutionary algorithm. 

The mining engineers at Leeville use SOT in their routine planning process.  The automation 

enables them to generate updated life-of-mine plans quickly, while the optimization ensures good 

schedules, and an objective comparison of competing strategic options. 

The mine planning problem has many inherently uncertain parameters, including mineral grades 

and prices.  Saavedra Rosas (2009) describes a modified evolutionary solver for the explicit incorporation 

of uncertainty in mine planning and scheduling, known as the Genetic Optimizer for Stochastic Problems, 

or GOSP.  Although this study treated all data as deterministic, it is recognized that GOSP could be applied 

to enhance the process, in order to generate robust schedules in the presence of uncertainty. 

 

PROCESS FOR GENERATING AN OPTIMIZED LIFE-OF-MINE SCHEDULE 

 

Gold Production Target 

 

The first investigation was in relation to the gold production target, expressed in troy ounces per 

year.  All capacities, whether intended as targets or constraints, are enforced at the level of granularity of a 

weekly period for this case study.  As can be seen in Figure 1, the effect of this is that the gold production 

appears to be over-constrained in comparison to the specified annual target.  This is the case because 

shortfalls may occur in any given week, but exceeding the target, although sometimes possible, is not 

permitted. The severity of this effect is directly related to the chosen level of granularity. 

From the base target of 575,000 troy ounces per year, three increments and three decrements were 

utilized, resulting in the generation of seven scenarios.  The step size was 25,000 troy ounces per year.  

This automatic flexing run performed a preliminary optimization for each of the seven resulting targets.  

Figure 2 shows the gold production in each year for each of the scenarios, and the corresponding NPVs.  

This analysis generated 13,000 schedules, and was completed in 9 hours. 
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Figure 2 – Initial comparison of alternative targets for gold production 

 

The mine planners selected the target of 575,000 troy ounces per year as the production schedule 

scenario to be carried forward for the case study, as it was considered likely that a smoothed gold 

production profile could be attained with this target through the subsequent optimization process. 

 

Seeding Heuristics 

 

SOT makes use of heuristics to bias the starting point of the search for high-NPV schedules.  The 

selected heuristic effectively assigns priorities to individual stopes, which will be used to arbitrate the 

allocation of operational resources.  The highest priority stopes are scheduled as early as permitted by 

constraints. 

Eleven alternative seeding heuristics are listed in Table 1.  When dealing with a mining project, it 

isn’t known a priori which of these heuristics will lead to the best schedules.  A flexing run is used to 

automatically apply each in turn, as well as the alternative of no seeding heuristic. 

 

Table 1 – Preset Seeding Heuristics 

Seeding 

Heuristic 
Ranking Factor 

Spatial Domain of 

Evaluation 

 1 highest mineral mass activity 

 2 highest mineral grade activity 

 3 least cost by mineral mass activity 

 4 highest mineral mass mine area 

 5 highest mineral grade mine area 

 6 least development distance by mineral mass mine area 

 7 least cost by mineral mass mine area 

 8 highest mineral mass activity and area 

 9 highest mineral grade activity and area 

10 least development distance by mineral mass activity and area 

11 least cost by mineral mass activity and area 

 

As shown in Figure 3, the ‘highest mineral mass activity’ heuristic was found to be the best for 

this mining project.  This assessment was based on random samplings of 50 schedules for each heuristic, in 

view of both the average and the maximum NPVs of the resulting schedules, requiring a 2 hour run. 
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Figure 3 – Comparison of schedules produced with no seeding heuristic (shown as heuristic 0) and the 11 

preset SOT seeding heuristics as listed in Table 1 

 

Following the selection of the seeding heuristic, a second set of runs was completed to determine 

the degree to which this heuristic should be applied, with a range of 50% to 100% tested.  When a seeding 

heuristic is applied 100%, the relative priorities of the stopes are set exactly, based on the selected property, 

such as mineral mass or mineral grade.  By reducing the application of the seeding heuristic to, say, 80%, 

approximately 20% of the stope priorities will be randomly assigned.  As shown in Figure 4, the highest-

mineral-mass-activity heuristic performs best for this project when applied at 90%.  For this analysis, 1,650 

schedules were produced, requiring 3.2 hours. 

 

 
 

Figure 4 – Comparison of schedules produced with applications of the highest-mineral-mass-activity 

seeding heuristic ranging from 50% to 100%, showing the maximum NPV, average NPV, and (circle size) 

standard deviation 

 

Evolutionary Learning 

 

The evolutionary learning mechanism used by SOT is similar to a genetic algorithm (Goldberg, 

1989), with mechanisms in place to ensure that all schedules generated are feasible.  Here, feasibility 

means that a schedule adheres to all precedence and operational resource constraints. 

The evolutionary algorithm generates a set of schedules; in this case, it generates a population of 

twenty schedules.  Each schedule is then evaluated for its NPV.  Of these twenty, the higher-NPV 

schedules tend to be selected more often, as specialized operations are applied in order to generate a new 

population of twenty schedules in the next iteration.  This evolving of schedules continues as long as 

succeeding populations of schedules improve over those of past iterations.  When there is no improvement 

in the NPV for, in this case, 10 successive iterations, the learning process has converged.  For this case 

study, a schedule was considered to be improved over another only if its NPV was higher by at least 

$250,000.  At convergence, the best schedules found are retained in the database, and a reset occurs, 

meaning that the learning process restarts with a new population, not based on any previous iteration.  This 
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continues for the selected number of resets.  The reset mechanism, which is just a repetition of the search 

from a new starting point, was implemented in light of the immense size of the search space, because the 

custom evolutionary algorithm performs a search which is, in a broad sense, local to the first population, 

unlike a conventional genetic algorithm. 

The mine planner sets two parameters to specify how many of the highest-NPV schedules should 

be retained for review; for example, the 2 best schedules from each of the 5 best resets can be retained.  A 

single reset may produce the 10 highest-NPV schedules overall, as occurred with reset 11 of Figure 5, and 

the best schedules from a given reset are likely to be very similar.  These two parameters make it possible 

for the mine planner to have available for review a diverse set of the best schedules. 

A seeding heuristic applied at an appropriate percentage can be used to bias the schedules 

generated in a manner that leads to higher-NPV schedules than the overall search space of feasible 

schedules.  This is illustrated in Figures 3 and 4, which show the results of runs intended to assess 

statistical properties of the sets of schedules generated with alternative seeding heuristics and alternative 

percentage applications, respectively. 

With the selected bias in place, namely, highest-mineral-mass-activity applied at 90%, the 

evolutionary algorithm was employed.  It can be observed from Figure 5 that, even with a strong 

application of a heuristic seeding, there is a wide range of qualities of reset starting points.  The learning 

algorithm assesses the initial population of a reset in comparison to previous resets of the learning run.  

The average or the maximum NPV of the initial population must be within a user-specified range of the 

corresponding NPVs of the previous initial populations that produced the best schedules of the run so far.  

If the initial population of the current reset does not meet these thresholds, the algorithm doesn’t learn from 

that population, but immediately performs another reset.  Typically, the threshold that a population must 

surpass in order to learn becomes more stringent as the run progresses. 

The learning run shown in Figure 5 generated 8,240 schedules over 10.5 hours.  The maximum 

NPV of $1.726 billion was found in iteration 180. 

 

 
 

Figure 5 – A SOT learning run using the seeding heuristic of highest mineral mass, applied at 90% 

 

Seeding based on a Prior Solution 

 

The best schedule from the learning run of Figure 5 was used to generate a customized seeding 

heuristic, which was then applied in a succeeding learning run.  This gives the custom-seeded learning run 

a consistently good starting point, as is shown in Figure 6.  This type of a run focuses the search for high-

NPV schedules on a narrower portion of the search space.  The best schedule for this more focussed search 

was found in iteration 361, with an NPV of $1.734 billion.  There were 31 resets, with 20,550 schedules 

produced over 16.6 hours.  Ten resets did not have the learning algorithm applied to them because their 

initial populations did not meet the average-NPV threshold or the maximum-NPV threshold. 
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Figure 6 – A SOT learning run using a custom seeding heuristic obtained from a prior SOT solution 

 

Slack Removal 

 

The optimized schedules may have an undesirable characteristic; namely, in order to improve the 

NPV, an ore development activity may be scheduled far in advance of the stope it accesses.  When desired, 

an algorithm can be employed to remove this type of slack from the schedule.  For the resulting schedule, 

development activities will occur ‘just-in-time’, yet still allowing for any lag specified in the predecessor-

successor linking.  As activities are rescheduled, operational resources may be released in a way that 

allows some stoping activities to be scheduled earlier.  Multiple passes of the algorithm are carried out, 

until all development is just-in-time and all stopes are scheduled as early as possible for the given 

constraints.  The mine planner can choose how ore development activities should be scheduled in this 

case—whether as early as permitted in order to maximize early gold production or so as to remove slack 

from the schedule. 

For this mining operation, with over 26,000 activities, slack removal takes just under an hour.  

The NPV of the schedule is increased from $1.734 billion to $1.779 billion by slack removal.  Figure 7 

shows the effect on the gold production achieved in each year of the mine life, and Figure 8 shows the 

corresponding ore production.  A smoothed gold production profile was achieved for years 5 to 9, with a 

consistent ramp-up in years 1 to 4. 

 

 
 

Figure 7 – Gold production profile of optimized schedule before and after slack removal 
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Figure 8 – Ore production profile of optimized schedule before and after slack removal 

 

DISCUSSION 

 

The benefits of automated scheduling and NPV optimization have been demonstrated by a case 

study employing the planned mining activities at Newmont’s Leeville-Turf operation.  Every schedule 

generated was feasible, and for a project with over 26,000 mining activities these were produced at the rate 

of about 17 per minute, with the exception of when the algorithm for removing slack was employed, in 

which case a single schedule was produced in just under one hour. 

Based on a random sampling of 100 leveled schedules, the average NPV of a leveled schedule for 

this mining operation is $1.657 billion.  We have described a systematic process for schedule optimization 

that was used to achieve an NPV of $1.779 billion, a difference of $122 million, or 7.4%.  In addition, 

months of effort are replaced by automated runs occurring over a few days. 

For most types of runs, significant optimization occurs in minutes, and the mine planner can 

monitor the progression of the run, to decide whether a one hour run is sufficient, or, such as in a case 

where the best possible NPV of a final scenario is sought, a run over many hours is warranted. 
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